5u^2+15u+10=0

Simple and best practice solution for 5u^2+15u+10=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5u^2+15u+10=0 equation:



5u^2+15u+10=0
a = 5; b = 15; c = +10;
Δ = b2-4ac
Δ = 152-4·5·10
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5}{2*5}=\frac{-20}{10} =-2 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5}{2*5}=\frac{-10}{10} =-1 $

See similar equations:

| 9(7u-9)-6(5u-4)+2(7u-9)=1 | | -3/7m+5=3+2m | | n3+3n^2+2n-60=0 | | -x-6x+8x-8=-4-6x+10 | | 25/38=5x/2 | | 4t+1/25-2t-3/5=1t+3/4+3t-1/12 | | 12(9-7t)+9(27-4)=6(8t-9)+72 | | X/4-1/2=x/6+1/3 | | 8(x-4)-(7-3x)=3(x+3)-4(7-x) | | 2(t-4)=7(3t-1) | | -16/x=6/30 | | -(x2)^2+1=-3 | | 9x+3/2=24 | | 15(8s-9)+60(7s-2)-50(3+2s)=2s | | 19x=-1710 | | 8x-8=10x-6 | | (x-4)(7-x)=27-x^2 | | (x-4)(7-x)=27-x² | | (x-4)*(7-x)=27-x² | | 1/3x-3/4=1 | | 2x/3+1=17/20x-2 | | (5x+3)-(2x-4)=5 | | 7x-13=6x-14 | | 4÷x+16=31 | | 6m+18=27 | | 5x-(320/x^2)=0 | | .96x=x-3 | | 96x=x-3 | | 3(3x+1)-31=26-2(x+5) | | a/2=2/3 | | .98x=x-3 | | x*0,4=1951,32 |

Equations solver categories